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require sophisticated software controllers. 
Given a vehicle simulation and an intelli- 
gent controller for that vehicle, what meth- 
ods are available for testing the controller’s 
robustness? Validation and verification are 
not enough: The controller might perform 
as specified, but the specifications could be 
incorrect: that is. the vehicle might not be- 
have as expected. Testing all possible situ- 
ations is obviously intractable. And tech- 
niques for testing isolated, low-level controllers 
do not apply to the vehicle as a whole.’ 

Also, traditional controller tests are la- 
bor intensive and time consuming. Some 
methods require simulated vehicle mis- 
sions to test the controller’s robustness 
under various conditions. After designing 
a fcrult scrrirrrio that will cause particular 
failures during a simulated mission, the 
test engineers observe the vehicle’s result- 
ing behavior and then refine the fault sce- 
nario to better exercise the controller. This 
cycle is repeated until the engineers are 
confident that the vehicle’s behavior will 
be appropriate in  the field. Implicitly, the 
engineers are searching for interesting fault 
scenarios. 

We propose a machine learning tech- 
nique to automate this process: We subject 
a controller to an adaptively chosen set of 

THIS APPROACH USES MACHINE LEARNING TECHNIQUES TO 
E VALUATE A UTONOMOUS- VEHICLE SOFTWARE 

CONTROLLERS. A SET OF SIMULATED FAULT SCENARIOS IS 
APPLIED TO A CONTROLLER, AND A GENETIC ALGORITHM 

SEARCHES FOR SIGNIFICANT COMBINATIONS OF FAULTS. 

fault scenarios in a vehicle simulator, and 
then use a genetic algorithm to search for 
fault combinations that produce note- 
worthy actions in the controller. We have 
applied this approach to find a minimal set 
of faults that produces degraded vehicle 
performance, and a maximal set of faults 
that can be tolerated without significant 
performance loss. 

Fault scenarios 

Afault.sce.ncrrio is a description of faults 
that can occur in a vehicle, and the condi- 
tions under which they will occur. It can 
also include information about the envi- 
ronment in which the vehicle is operating. 
Each scenario has two main parts (see 
Figure I ) .  The initid conditions give start- 

ing states for the vehicle and environment, 
such as initial speed, attitude, position, and 
so on. The fault rules map current condi- 
tions to fault modes. 

Each fault rule also has two parts. The 
rriggers on the left represent the conditions 
that must be met for the fault to occur. 
Each trigger measures some aspect of the 
cur ren t  s ta te  of t h e  vehic le ,  the  e n v i -  
ronment ,  or o ther  fau l t s  tha t  might  be 
ac t iva ted  at that time. A trigger has a low 
and a high value; i f the  measured quantity 
is within the trigger’s range, that trigger 
is “satisfied.” When all triggers in a rule 
are satisfied, the,fciulr mode (the right side 
of the rule) is instantiated in the vehicle 
simulation. Each fault mode also has two 
parts: The fault type describes the vehicle 
subsystem that will fail, and the,fiult level 
describes the failure’s severity. Thus, after 
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Figure 1. Representation of a fault scenario. 

E l  Fault type 1 Fault level 

If -63.00 <= velocity [XI <= 64.00 
-56.00 <= velocity [y] <= -28.00 

-254.00 <= velocity [z] <= -224.00 
-16,220 <= position [XI  <= -860 

13 <= position [y] <= 832 
2,040 <= position [z] <= 2040 
-325 <= pitch <= 635 

-1,370 <= yaw <= -100 
-900 <= roll <= -857 

7 <= elapsed time <= 2,016 
0 <= last fault <= 2,044 
0 <= thrust <= 72 

16 <= flaps <= 40 
M-drag = NA 
C-flaps = NA 

S-azimuth = NA 
C-elevator = NA 

C-rudder = Clear 

S-elevation = NA 
C-rollers = Set 
S-roll = NA 

Then Set fault type  = S-roll 
Set fault value = -0 232 

* * *  R u l e 2  * * * * * * * * * * * * * + * * * * *  
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~igure 2. Part of a fault scenario file. 

reading the initial conditions and setting 
t h o x  I ariablc\. the \ysteiii examines each 
rule at each \imtiliited time step to w e  i f  

10 

any triggers are sati5fied: if they are, i t  
instantiates that rtilc'j fault mode with the 
given amount of degradation. 

~ ~~ 

Evaluating a fault scenario. When test 
engineers search for interesting fault sce- 
narios. they apply an evaluation criterion 
to measure each scenario'\ usefulness. To 
automate the search process. we must ex- 
plicitly define an e \  aluation function that 
can mea\ure the fitness of each scenario. 
This can be d i ffi c u I t . becn ti se e val LI at i on 
criteria are often based on informal judg- 
men t s . 

One approach meastire\ the difl'erencc 
between the controller's actual performance 
in ;I scenario against some form of ideal 
response. The ideal response could be ap- 
proximated based on knowledge of the 
causal assumption behind the fault mode 
(that is, a certain sensor has failed and 
should be recalibrated or ignored). or i t  
could be based on an expert controller's 
actions. or i t  could simply be to return to 
nominal performance of the mi3sion plan 
in  the least amount of time. Computing the 
ideal re s pon se in i g ht rcq ti i rc in formation 
that is n o t  available to the controller. Al- 
though this approach i s  a more uitoninted 
"ay to identify problem areas for the con- 
troller. i t  also require\ :I substantial effort 
to design software that can compute ideal 
responses. 

A second approach nie;isiires fi tnesj  
based on the likelihood and severity of 
fault conditions. The highest fitncs\ indi- 
cates thc most likely set of faults that cau\e 
the controller to degrade to a specified 
level. This approach is useful i f  probability 
estimates of the various fault modes Lire 
available when the evaluation function i \  
being constructed. Unfortunately. inany of 
the fault modes that longendurance auton- 
oinous vehicles would encounter are of 
low probability and have the same order of 
magnitude. Therefore. this approach would 
not work in  practice. 

A third approach rewards fault scenarios 
occurring o n  the boundary of the control- 
ler's performance space. That is. a set of 
fault rules would receive a high fitlies5 
rating if i t  causes the controller to degrade 
sufficiently. but some minor variation would 
not. This fitness function would help us 
identify "hot spots" in the controller's per- 
formance space. but we wotild have to 
cbaluate several scenarios for each faul t  
specification. and each evaluation would 
rcq u i re a C O  ni pl ete in i si on si mu I a t  i on.  
Depending on the computation cost. this 
approach might not be feasible. 

A fourth approach defines and searche5 
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the elevators, rudder, ailerons, or flaps 
might fail to reach a commanded angle 
The fault level is a percentage of the total 
range for that actuator For example, since 
the normal range for flaps is 0" to 40°, a 10- 
percent fault level is 4" positive error, 
while a fault level of - 10 percent would 
yield an actuator set 4' lower than expected 

Sentor fnultr are failure5 of vehicle sen- 
s o n  or detectors When the controller tries 
to read a sensor, i t  receives erroneous in- 
formation either because of noise or sensor 

for interesting scenarios. There are several 
ways to define "interesting" in the context 
of an intelligent controller, each producing 
a separate function. One interesting class 
of scenarios are those in which minimal 
fault activity causes a mission failure or 
vehicle loss. The dual of that class com- 
prises scenarios in which maximal fault 
activity still permits a high degree of mis- 
sion success. Using this approach, we im- 
plemented an evaluation function for the 
automated testbed: Maximizing this func- 
tion produces fault scenarios that yield a 
minimal level of fault activity, while min- 
imizing this function finds fault scenarios 
that allow a high level of fault activity that 
can still be tolerated without significant 
performance loss. 

free state, so they would be modeled as 
nonpersistent On the other hand, increased 
drag due to damage cannot be undone and 
is modeled as a persistent fault 

Trigger conditions. In our AutoAce 
1 experiments, each fault rule has 2 1 triggers 

( 1  -3) components of the velocity vector 
(.a, \, and z ) ,  

(4-6) absolute position in space (x, 1, and z ) ,  
(7-9) attitude (pitch, yaw, and roll), 
( I  0) flap setting, 

Autonomous vehicles 

Our end goal is to evaluate the robust- 
ness of an autonomous underwater vehi- 
cle, but the full-scale AUV was not avail- 
able in the early stages of developing this 
technique. Our initial development there- 
fore focused on a controller for an autono- 
mous air vehicle, although the general 
method can be applied to AUVs as well. 
The domain involved a medium-fidelity. 
three-dimensional simulation of a jet air- 
craft that flies to and lands on an aircraft 
carrier and is guided by an intelligent con- 
troller. The simulation, called AutoAce. 
can also control environmental conditions. 
including constant wind and wind gusts. 

The autonomous controller, which flies 
the aircraft and lands it on the deck. was 
designed using a subsumption-based ar- 
chitecture.? The controller is composed of 
individual behaviors, operating at differ- 
ent levels of abstraction, that communicate 
among themselves. Top-level behaviors in- 
clude ,fly-cruft and /und-c.ruft. At a lower 
level. behaviors include , flyheading and 
fly-ulritude. The lowest level behaviors 
include hold-pitch and adjust-roll. After 
the initial design, optimization techniques 
were used to improve the controller such 
that it could successfully fly and land the 
aircraft in constant wind and in wind gusts. 

Modeling faults. We introduced three 
classes of faults into the simulation. A 
contro1,fkult occurs when an actuator fails 
to perform an action commanded by the 
controller. In the control faults we modeled, 

a fault should be instantiated. Figure 2 
shows part of a fault scenario file for the 

' 

COLLECTING A LARGE 
NUMBER OF INTERESTING AutoAce system. 

FAULT SCENARIOS THAN IN 
FINDZNG THE SINGLE, MOST 
INTERESTING ONE. 

Setting initial conditions. We modified 
the simulator to read a fault scenario file at 
startup. The first group of items in the file 
are the initial conditions, which describe 

pitch, yaw, and roll sensor faults. For ex- 
ample, a pitch sensor fault represents a 
failure in the sensor that determines the 
vehicle's current pitch in degrees from the 
horizon. The fault level for a sensor fault is 
expressed as a percentage of ? I 80°, since 
that is the total range these sensors might 
return. Thus, a fault degradation of -10 
percent in the pitch sensor means that the 
reported value is 18 degrees below the 
actual one. 

Model  fuulrs are not directly related to 
sensors or actuators; they usually involve 
physical aspects of the vehicle. For exam- 
ple, a leak in an AUV is a model fault. The 
current simulation has only one model fault, 
which represents increased drag due to 
vehicle damage. I n  general, the fault level 
depends on the type of model fault. In  the 
case of drag, degradation is expressed as a 
percent increase in drag, from none to an 
amount that is reasonable in this domain. 

In  addition to these three classes, faults 
can be identified as persistent or nonper- 
sistent. Persistent faults do  not cease, while 
nonpersistent ones must be reinstantiated 
at each time step to continue. For example, 
actuators and sensors tend to have inter- 
mittent failures and can return to a fault- 

the environment and the aircraft's starting 
configuration. We restricted the range of 
initial conditions so that no setting by itself 
could cause the vehicle to fail; all aircraft 
failures had to come from the instantiation 
of vehicle faults. When the simulation starts, 
the aircraft begins its mission approxi- 
mately two nautical miles from the carrier 
and then proceeds to land. The initial con- 
ditions are 

constant wind speed (knots); 
wind direction (degrees): 
initial altitude (feet); 
initial distance from the carrier (nautical 
miles): 
horizontal offset (in feet), or how well 
the aircraft is lined up with the carrier 
(zero means i t  is perfectly lined up); and 
initial forward velocity (feet per second). 

Genetic algorithms 

To search for fault scenarios, we use a 
class of learning systems called genetic 
ci1gorirhni.s (described in this issue's intro- 
duction o n  pages 5-8  and e l ~ e w h e r e ~ . ~ ) .  
A GA simulates the dynamics of popula- 
tion genetics by maintaining a knowledge 
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rigure 3. Using a genetic algorithm to test an intelligent controller. 

base of fault scenarios that evolves over 
time in response to the vehicle’s simulated 
performance. An evaluation function cap- 
tures the structure’s fitness, as described 
earlier. The search proceeds by repeatedly 
selecting fault scenarios from the current 
population based on fitness. That is,  high- 
performing structures can be chosen sever- 
al times for replication. while poorly per- 
forming structures might not be chosen at 
all. Next. the algorithm constructs plausi- 
ble new fault scenarios ( o f j ~ p r i n g )  by ap- 
plying idealized genetic search operators 
to the selected structures. For example, 
cro.s.soi’cr exchanges pieces of scenario 
representations to create new offspring, 
and r i i i r f r i i i o r i  makes small random changes 
to the scenarios. The GA evaluates the 
new fault scenarios in the next iteration 
(generation). 

The applitation 

Figure 3 shows how we used GAS to test 
controller performance. Given a vehicle 
simulator and an intelligent controller, the 
GA automatically evaluates many scenar- 
ios and searches for interesting ones. 

When applying a GA to a particular 
problem. i t  i s  often necessary to tailor the 
algorithm to a chosen representation lan- 
guage. and to develop new genetic opera- 
tors that take advantage of available do- 
main knowledge. Using the fault scenario 
representation discussed earlier. each mem- 
ber of the population represents a single 
fault scenario. and has the form 

s .\ .__ .s r r ... r 

where each s i s  a simulation parameter 
specifying an initial condition, and each r 

i s  a fault rule of the form t r igger& trigger 
&...& trigger + f a u l t  niode. 

GAS are often used to find a single near- 
optimal point in a search space. For this 
project, we were more interested in col- 
lecting a large number of interesting fault 
scenarios than in  finding the single, most 
interesting one. In our initial experiments, 
we accomplished this by stopping the GA 

identifying interesting weaknesses in  the 
controller. On the other hand, minimizing 
the function searches for controller suc- 
cesses in  light of significant vehicle fail- 
ures. This allows us to characterize the 
controller’s robustness with respect to gen- 
eral classes of faults. 

Fault activity measures the level of faults 
introduced over the entire mission. To  cal- 
culate this, we normalize the absolute value 
of the active fault levels during a given time 
step so that they are between 1 and 10, and 
then take the product: 

cirrrcvit,fault activity = 

n((l ,fault /eve/ I x 9.0)+ I .o) 
(r(.ril,e rill?\ 

Then we calculate the average fault activ- 
ity over the entire mission: 

tirne 

Using such factors as the distance from 
center line, the roll angle at touchdown, 
and the velocity of descent, the simulator 
returns a score based on the quality of the 
landing: 

if crash landing 

if abort 

Thus, a score of I O  indicates a perfect 
landing. We now combine the fault activity 
and the score: 

when convergence reached a predefined 
level. This meant that the final population 
still represented a widely diverse set of 
fault scenarios. We also tried having the 
system record the best individuals from 
each generation. I t  i s  also possible to keep 
a record of all scenarios tested, and then 
apply a postprocessor to search for diverse. 
interesting ones. 

Another important consideration in- 
volved generating an initial population of 
fault scenarios. To have enough active faults, 
we had to force a large degree of generality 
in the triggers of the initial population’s 
fault rules. We introduced a parameter that 
adjusted the percentage of triggers that 
were initially set to their full range. By i 
tuning this parameter, we ensured that all 
the initial scenarios had at least some fault 
activity. This gave the GA sufficient infor- 
ination to construct more interesting sce- 
narios over the course of the run. 

e v d  = I / @ u / r  activity x score)  

With no faults and acrash landing (actual- 
ly, this i s  impossible), eval returns I ,  the 
maximum possible value. With maximal 
fault levels throughout the mission and a 
perfect landing, eva/ returns 0.01, the min- 
imum possible value. The evaluation function. A GA’s fit- 

ness function measures the usefulness of 
arbitrary points in the search space defined Experimental results. In  all our ex- 
by the representation language. For these periments, we used a population size of 
experiments, we defined a function that 100 and ran the GA for 100 generations, 
gives high ratings to scenarios that induce resulting in 10,000 evaluations. We first 
the controller to perform interesting be- maximized the fitness function to find sev- 
haviors. Maximizing the evaluation func- ~ eral minimum-fault ,  maximum-failure 
tion searches for controller failures in the scenarios. Figure 4 shows a learning curve 
face of minimal aircraft problems, thus , for arepresentative experiment: T h e x a x i s  



represents the number of trials, and the y 
axis represents the average value returned 
by the function for all fault scenarios in  
that generation. The GA quickly homed in 
on scenarios with high fitness, that is, sce- 
narios where minimal fault activity led to 
controller failure. 

By examining the scenarios identified by 
the GA as interesting, we drew the follow- 
ing conclusions about the controller: 

Roll control is most critical as the air- 
craft starts to touch down. 
Sensor errors are much harder to recover 
from than are control errors. 
Even slight increases of drag cause the 
controller to behave poorly. 

Next. we minimized the evaluation func- 
tion to search for successful flights despite 
significant vehicle failures. We were able 
to characterize the controller’s robustness 
with respect to some general classes of 
faults: 

The G A  again found that the controller 
can recover from control faults, but that 
sensor faults are much harder to handle. 
Recovering from faults that affect air- 
craft pitch is easier than recovering from 
faults affecting its roll. This agrees with 
the earlier observation. 
The GA identified situations in which i t  
is possible for some faults to “cancel” 
out the effects of other faults (for exam- 
ple, positive sensor errors might offset 
negative control errors). 

In more of a qualitative affirmation of 
our method. we showed the designer of the 
AutoAce controller some of the  interesting 
scenarios generated by the GA. The de- 
signer acknowledged that these scenarios 
provided some insight into parts of the 
intelligent controller that could be improved. 
In  particular. the scenarios as a group tend- 
ed to indicate classes of weaknesses. as 
opposed to highlighting single weakness- 
es. This allows the designer to improve the 
controller’s robustness over a class as op- 
posed to only patching specific instances 
of problems. 

0 UR APPROACH T O  FITNESS, 
based on the extent to which fault activity 
i n f l u e n c e s  miss ion  p e r f o r m a n c e ,  i s  
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Figure 4. The learning curve for maximizing the evaluation function. 

promising. It offers advantages over man- 1 References 
ual testing of sophisticated software con- 
trollers, although i t  should supplementrath- 
er than replace other forms of software 
validation. The method can be applied to 
intelligent controllers for autonomous un- 
derwater, ground, or air vehicles; the basic 
approach stays the same. 
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Lockheed Missiles & Space Company’s 
Artificial Intelligence Center in Palo Alto has 
positions immediately available for program- 
mers in the following areas: 

DATA COMPREHENSION 
Multimedia data analysis, including deductive 
database, image classification, massively 
parallel software and data visualization. 

AUTONOMY 
User interfaces, real-time computing hardware, 
and real-time mission planning. 

COMPUTATIONAL WORK 
ENVIRONMENTS 

Intelligent systems in the design and manufactur- 
ing domain, distributed AI systems, systems 
involving multimedia and groupware technology, 
and engineering knowledge representatin. 

To qualify for these positions, you must have a 
BS (MS preferred) in Computer Science or 
related area. The work will involve development 
of object-oriented systems, X-Window applica- 
tions and 3D Graphics. Preferred candidates 
will have significant experience in C, C++, 
GUI development, and the ability to develop 
systems on a Sunm or Silicon Graphicsm 
workstation. 

For consideration, please send your resume to 
Herman Ficklin, Lockheed Missiles & Space 
Company, Professional Staffing, Dept. 
XPERllNHF, P.O. Box 3504, Sunnyvale, CA 
940883504, Lockheed is an equal opportunity, 
affirmative action employer. 
All trademarks are registered to their respective 
companies. 
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